Phosphorylierung

„Unter Phosphorylierung versteht man in der Biochemie das reversible (umkehrbare) Anhängen einer Phosphorylgruppe an ein organisches Molekül,[1] insbesondere an Proteine. Das Resultat sind Phosphoproteine. Diese Phosphorylierung stellt (neben der allosterischen und der kompetitiven Hemmung) die wichtigste Regulation von biologischen Prozessen in der Zelle dar. Chemisch handelt es sich um die Bildung eines Phosphorsäureesters.

Das Prinzip der Phosphorylierung wurde zuerst bei der Gärung vom Nobelpreisträger Arthur Harden und dessen Schüler William John Young entdeckt. Für die Aufklärung des genauen Mechanismus erhielten Edmond Henri Fischer und Edwin G. Krebs 1992 den Nobelpreis für Physiologie und Medizin.

Phosphorylierung von Proteinen

Im Prozess involvierte Enzyme

Die Enzyme, welche die Phosphorylierung von Proteinen katalysieren, heißen Proteinkinasen. Dabei wird eine Phosphatgruppe kovalent an einen Aminosäurerest gebunden, in der Regel mit ATP als Substrat für das Phosphat. Eine andere Enzymkategorie, die Phosphatasen, können diesen Prozess umkehren, d. h. die Phosphatgruppe wird vom Protein entfernt. Proteinkinasen und -phosphatasen sind dabei in der Regel sehr spezifisch und können ebenfalls in ihrer Aktivität gezielt kontrolliert werden.

Funktion

Da eine Phosphatgruppe eine polare Ladung besitzt, hat eine Phosphorylierung oft Konformationsänderungen des Proteins zur Folge, so dass es zwei möglicherweise funktionell verschiedene Formen des Proteins gibt, je nachdem ob es phosphoryliert ist oder nicht. Diese zwei Formen können, je nach Einzelfall, aktivierte oder inaktivierte Formen eines Proteins darstellen. Viele Transkriptionsfaktoren werden auf diesem Weg über Signaltransduktionskaskaden aktiviert, beispielsweise CREB.

Eine weitere Form der Einflussnahme durch Phosphorylierung ist die Regelung von Proteinbindestellen. Insbesondere Proteindomänen, die diese Interaktionen vermitteln, werden phosphoryliert und können so keine Proteinkomplexe mehr bilden. Viele Rezeptoren, wie G-Protein gekoppelte Rezeptoren, werden auf diesem Weg in ihrer Aktivität reguliert. Proteinphosphorylierung und Dephosphorylierung haben somit regulatorische Funktion.

Ort der Phosphorylierung

In Proteinen werden hauptsächlich drei Aminosäuren phosphoryliert, nämlich solche mit einer Hydroxygruppe in der Seitenkette: Tyrosinkinasen binden die Phosphatgruppe an Tyrosin, Serin/Threoninkinasen an Serin oder Threonin. Dabei ist Serin die am häufigsten phosphorylierte Aminosäure. Das Verhältnis der Phosphorylierung von Ser, Thr und Tyr liegt bei 1800 : 200 : 1.

Noch seltener als Tyrosin werden die Aminosäuren Histidin, Arginin, Lysin, Cystein, Glutamat und Aspartat phosphoryliert. Jedoch gibt es auch für diese Phosphorylierungen Beispiele: Im Phosphotransferase-System (PTS) werden verschiedene Histidine sowie ein Cystein phosphoryliert. Bei Zweikomponentensystemen, die der Signaltransduktion dienen, werden konservierte Histidin- bzw. Aspartatreste phosphoryliert.

Phosphorylierung anderer Moleküle

Werden andere Moleküle (Zucker, Nucleotide) phosphoryliert, so dient dies in der Regel der Bereitstellung chemischer Energie im Molekül, um in nachfolgenden Schritten endotherme, d. h. energieverbrauchende Umwandlungen zu ermöglichen. Polyphosphate wie ATP oder Creatinphosphat dienen im Stoffwechsel als universelle „Energiewährung“ zur Zwischenspeicherung und zum Austausch von Energie zwischen verschiedenen Prozessen.

Stand vom 25. Nov 2023 @ 18:27 … ” → Wp

Hauptquellen der Texte und Materialien:
Internationale Wikipedias. Wurde evtl. ganz oder teilweise ins Deutsche übersetzt. Unter der Creative Commons Attribution-Share-Alike License 4.0 verfügbar; zusätzliche Bedingungen können gelten. Durch die Nutzung dieser Website erklären Sie sich mit den Nutzungsbedingungen und der Datenschutzrichtlinie einverstanden.

Weitere extensive und evtl. aktuellere Ausführungen finden Sie in den zitierten Wikipedia-Artikeln.